Cryptocyanin, a crustacean molting protein: evolutionary link with arthropod hemocyanins and insect hexamerins.

نویسندگان

  • N B Terwilliger
  • L Dangott
  • M Ryan
چکیده

Cryptocyanin, a copper-free hexameric protein in crab (Cancer magister) hemolymph, has been characterized and the amino acid sequence has been deduced from its cDNA. It is markedly similar in sequence, size, and structure to hemocyanin, the copper-containing oxygen-transport protein found in many arthropods. Cryptocyanin does not bind oxygen, however, and lacks three of the six highly conserved copper-binding histidine residues of hemocyanin. Cryptocyanin has no phenoloxidase activity, although a phenoloxidase is present in the hemolymph. The concentration of cryptocyanin in the hemolymph is closely coordinated with the molt cycle and reaches levels higher than hemocyanin during premolt. Cryptocyanin resembles insect hexamerins in the lack of copper, molt cycle patterns of biosynthesis, and potential contributions to the new exoskeleton. Phylogenetic analysis of sequence similarities between cryptocyanin and other members of the hemocyanin gene family shows that cryptocyanin is closely associated with crustacean hemocyanins and suggests that cryptocyanin arose as a result of a hemocyanin gene duplication. The presence of both hemocyanin and cryptocyanin in one animal provides an example of how insect hexamerins might have evolved from hemocyanin. Our results suggest that multiple members of the hemocyanin gene family-hemocyanin, cryptocyanin, phenoloxidase, and hexamerins-may participate in two vital functions of molting animals, oxygen binding and molting. Cryptocyanin may provide important molecular data to further investigate evolutionary relationships among all molting animals.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hemolymph Proteins and Molting in Crustaceans and Insects '

SYNOPSIS. The exoskeleton of crustaceans and insects is formed by cells of the hypodermis, but several hemolymph proteins contribute to the synthesis of the new exoskeleton. These hemolymph proteins share a surprising degree of sequence similarity and are members of the hemocyanin gene family. Copper-containing prophenoloxidases of crustaceans and insects are directly involved in cross-linking ...

متن کامل

Evolution of arthropod hemocyanins and insect storage proteins (hexamerins).

Crustacean and cheliceratan hemocyanins (oxygen-transport proteins) and insect hexamerins (storage proteins) are homologous gene products, although the latter do not bind oxygen and do not possess the copper-binding histidines present in the hemocyanins. An alignment of 19 amino acid sequences of hemocyanin subunits and insect hexamerins was made, based on the conservation of elements of second...

متن کامل

cDNA cloning of a developmentally regulated hemocyanin subunit in the crustacean Cancer magister and phylogenetic analysis of the hemocyanin gene family.

The complete cDNA sequence and protein reading frame of a developmentally regulated hemocyanin subunit in the Dungeness crab (Cancer magister) is presented. The protein sequence is aligned with 18 potentially homologous hemocyanin-type proteins displaying apparent sequence similarities. Functional domains are identified, and a comparison of predicted hydrophilicities, surface probabilities, and...

متن کامل

Crustacean hemocyanin gene family and microarray studies of expression change during eco-physiological stress.

Proteins in the arthropod hemocyanin gene family are involved in major physiological processes, including aerobic respiration, the innate immune response, and molting. Members of this family, hemocyanin, cryptocyanin, and phenoloxidase, are multisubunit molecules that assemble into hexamers and higher aggregates. The hemocyanin hexamers show species-specific subunit heterogeneity. It is hypothe...

متن کامل

Sequence of the hexameric juvenile hormone-binding protein from the hemolymph of Locusta migratoria.

The cDNA for the hexameric hemolymph juvenile hormone-binding protein (JHBP) from the migratory locust has been cloned and sequenced. Antiserum raised against purified JHBP was used to identify clones in an expression library. The 4.3-kilobase JHBP mRNA codes for 668 amino acids (74.4 kDa) and contains 2 kilobases of 3'-untranslated region. The derived amino acid sequence reveals that locust JH...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 96 5  شماره 

صفحات  -

تاریخ انتشار 1999